New Multivariate Product Density Estimators

نویسنده

  • Luc Devroye
چکیده

where X(k) = (X(k)1, . . . , X(k)d), and X(k) is the k-th nearest neighbor of x when points are ordered by increasing values of the product ∏d j=1 |xj−X(k)j |, and k = o(log n), k → ∞. The auxiliary results needed permit us to formulate universal consistency results (pointwise and in L1) for product kernel estimates with different window widths for each coordinate, and for rectangular partitioning and tree estimates. In particular, we show that locally adapted smoothing factors for product kernel estimates may make the kernel estimate inconsistent even under standard conditions on the bandwidths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification via kernel regression based on univariate product density estimators

We propose a nonparametric discrimination method based on a nonparametric Nadaray-Watson kernel regression type-estimator of the posterior probability that an incoming observed vector is a given class. To overcome the curse of dimensionality of the multivariate kernel density estimate, we introduce a variance stabilizing approach which constructs independent predictor variables. Then, the multi...

متن کامل

Classification via kernel product estimators

Multivariate kernel density estimation is often used as the basis for a nonparametric classification technique. However, the multivariate kernel classifier suffers from the curse of dimensionality, requiring inordinately large sample sizes to achieve a reasonable degree of accuracy in high dimensional settings. A variance stabilising approach to kernel classification can be motivated through an...

متن کامل

Multivariate Locally Adaptive Density Estimation

SUMMARY: Multivariate versions of variable bandwidth kernel density estimators can be used to combat the eeects of the curse of dimensionality. They are also more exible than the xed bandwidth estimator to model complex (multimodal) densities. In this work, two variable bandwidth estimators are discussed: the balloon estimator which varies the smoothing matrix with each estimation point and the...

متن کامل

Kernel density estimation for directional-linear data

A nonparametric kernel density estimator for directional–linear data is introduced. The proposal is based on a product kernel accounting for the different nature of both (directional and linear) components of the random vector. Expressions for bias, variance and mean integrated square error (MISE) are derived, jointly with an asymptotic normality result for the proposed estimator. For some part...

متن کامل

Nonparametric Density Estimation using Wavelets

Here the problem of density estimation using wavelets is considered. Nonparametric wavelet density estimators have recently been proposed and seem to outperform classical estimators in representing discontinuities and local oscillations. The purpose of this paper is to give a review of different types of wavelet density estimators proposed in the literature. Properties, comparisons with classic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007